skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Topcu, Gamze Böcek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Determining accurate effective temperatures of stars buried in the dust-obscured Galactic regions is extremely difficult from photometry. Fortunately, high-resolution infrared spectroscopy is a powerful tool for determining the temperatures of stars with no dependence on interstellar extinction. It has long been known that the depth ratios of temperature-sensitive and relatively insensitive spectral lines are excellent temperature indices. In this work, we provide the first extensive line depth ratio (LDR) method application in the infrared region that encompasses both the H and K bands (1.48 μ m − 2.48 μ m). We applied the LDR method to high-resolution ( R ≃ 45,000) H- and K -band spectra of 110 stars obtained with the Immersion Grating Infrared Spectrograph. Our sample contained stars with 3200 < T eff (K) < 5500, 0.20 ≤ log g < 4.6, and −1.5 < [M/H] < 0.5. The application of this method in the K band yielded 21 new LDR– T eff relations. We also report five new LDR– T eff relations found in the H -band region, augmenting the relations already published by other groups. The temperatures found from our calibrations provide reliable temperatures within ∼70 K accuracy compared to spectral  T eff values from the literature. 
    more » « less
  2. Abstract We have gathered near-infraredzyJ-band high-resolution spectra of nearly 300 field red giant stars with known lithium abundances in order to survey their Heiλ10830 absorption strengths. This transition is an indicator of chromospheric activity and/or mass loss in red giants. The majority of stars in our sample reside in the red clump or red horizontal branch based on theirV−J,MVcolor–magnitude diagram, and GaiaTeffand log(g) values. Most of our target stars are Li-poor in the sense of having normally low Li abundances, defined here as logϵ(Li) < 1.25. Over 90% of these Li-poor stars have weakλ10830 features. However, more than half of the 83 Li-rich stars (logϵ(Li) > 1.25) have strongλ10830 absorptions. These largeλ10830 lines signal excess chromospheric activity in Li-rich stars; there is almost no indication of significant mass loss. The Li-rich giants may also have a higher binary fraction than Li-poor stars, based on their astrometric data. It appears likely that both residence on the horizontal branch and present or past binary interaction play roles in the significant Li–He connection established in this survey. 
    more » « less